Getting control of PMT and vPvM substances under REACH
26th March 2020

How to achieve better protection of the environment and human health from PMT/vPvM substances

Ninja Reineke (PhD)
ninja.reineke@chemtrust.org
CHEM Trust

- An NGO working at EU, UK, German & global levels to protect humans & wildlife from harmful chemicals
- Working at the science policy interface, in partnership with other civil society groups
- See our blog & twitter for more: www.chemtrust.org @chemtrust
Content

- Need for addressing PMT/vPvM substances
- REACH: advancing controls for persistent chemicals
- CLP: PMT/vPvM criteria - Learning from endocrine disrupters
- Key principles for better protection of environment and health
- Conclusions
Substance properties of concern

- Persistence
- Bioaccumulation/ Mobility
- Toxicity
Insufficient controls for PBTs/PMTs
e.g. PFAS levels in German children

- Levels of PFOS/PFOA decreased over last 20 years
- 20% of kids still above HBM-I- Value, just for PFOA
- Short-chain PFAS used as replacements

Figure: German Environment Agency
Ever growing number of PMTs/vPvMs

- GenX
- PFBS
- Dioxane
- Trifluoroacetic acid
- ...

Persistent, mobile and toxic in the environment: a spillover research and regulatory agenda

Abstract

Certain persistent and polar substances may pose a hazard to drinking water resources. To foster the knowledge exchange in this field the Working Group "Environmental Monitoring of the German Chemical Society (GDCh) Division Environmental Chemistry and Ecotoxicology" discussed at their meeting in December 2018 the significance and relevance of persistent, mobile and toxic chemical (PMT) substances in the environment. Five oral contributions highlighted not only various aspects such as the identification of potential PMT substances based on certain proper-
Achieving better protection means:
+ scrutiny and prevention at source
+ via regulation (REACH and CLP)

The following applies to PBTs/vPvB as well as PMTs/vPvB:

- Once in the environment, impossible to get them back
- Potential for serious and irreversible effects
- Clean-up of drinking water difficult and only at very high cost
- Burden for future generations

PMT and vPVM substances pose an equivalent level of concern to PBT and vPvB substances under REACH (Hale et al., 2020 Environ Sci Eur (2020) 32:155)
REACH: Addressing PMTs/vPvMs

NOW:
- Industry has to ensure safe use over entire life cycle
- SVHC identification under PMT/vPvM possible under 57f
- BUT identification and regulatory measures are very slow

FUTURE:
- Improved data provision in registration
- new criteria for PMT/vPvM (separate entry in article 57)
- Speeding up controls via authorisation/restriction
Discussion on new CLP hazard classes ongoing

Different categories to reflect the scientific evidence and available data

Suspected category provides transparency and allows differentiated follow-up action

We need to do this faster than for EDs – we can`t lose another decade!
Key principles for achieving more protection

- Regulating groups of substances
- Addressing combination effects of chemical mixtures (see actions in CSS)
- ´No data no market´ (currently No data = no problem)
- Quicker processes needed:
 - ECHA PBT expert group: very few substances identified
 - REACH substance evaluation too slow and often no follow up (example DBDPE)
- Polluter pays principle
Exposed to a cocktail of synthetic chemicals

- TBBP-A
- BFR
- PCDD
- NPE
- PFOA
- DBT
- PFHxS
- PFNA
- PFAS
- PFBA
- PCP
- DEHP
- DBP
- PAH
- PFBS
- PFOS
- SCCP
- PCBs
- PFCs
Conclusions and recommendations

- Persistence alone is a major cause for concern
- Substitution of substances with PBT/PMT properties has to be advanced
- Risk management must focus on groups of substances and address mixtures
- Research needs resources for methods and (bio)monitoring
- EU Chemical Strategy has great potential to deliver on ‘zero pollution ambition’
For more protection of environment and human health

→ From persistent pollution to precaution and prevention